Head direction is coded more strongly than movement direction in a population of entorhinal neurons.

نویسندگان

  • Florian Raudies
  • Mark P Brandon
  • G William Chapman
  • Michael E Hasselmo
چکیده

The spatial firing pattern of entorhinal grid cells may be important for navigation. Many different computational models of grid cell firing use path integration based on movement direction and the associated movement speed to drive grid cells. However, the response of neurons to movement direction has rarely been tested, in contrast to multiple studies showing responses of neurons to head direction. Here, we analyzed the difference between head direction and movement direction during rat movement and analyzed cells recorded from entorhinal cortex for their tuning to movement direction. During foraging behavior, movement direction differs significantly from head direction. The analysis of neuron responses shows that only 5 out of 758 medial entorhinal cells show significant coding for both movement direction and head direction when evaluating periods of rat behavior with speeds above 10 cm/s and ±30° angular difference between movement and head direction. None of the cells coded movement direction alone. In contrast, 21 cells in this population coded only head direction during behavioral epochs with these constraints, indicating much stronger coding of head direction in this population. This suggests that the movement direction signal required by most grid cell models may arise from other brain structures than the medial entorhinal cortex. This article is part of a Special Issue entitled SI: Brain and Memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum.

The spiking activity of hippocampal neurons during rapid eye movement (REM) sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories. Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the...

متن کامل

Anatomical organization of presubicular head-direction circuits

Neurons coding for head-direction are crucial for spatial navigation. Here we explored the cellular basis of head-direction coding in the rat dorsal presubiculum (PreS). We found that layer2 is composed of two principal cell populations (calbindin-positive and calbindin-negative neurons) which targeted the contralateral PreS and retrosplenial cortex, respectively. Layer3 pyramidal neurons proje...

متن کامل

Topography of Head Direction Cells in Medial Entorhinal Cortex

BACKGROUND Neural circuits in the medial entorhinal cortex (MEC) support translation of the external environment to an internal map of space, with grid and head direction neurons providing metrics for distance and orientation. RESULTS We show here that head direction cells in MEC are organized topographically. Head direction tuning varies widely across the entire dorsoventral MEC axis, but in...

متن کامل

Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus.

Anatomical and physiological evidence suggests that hippocampal place cells derive their spatial firing properties from the medial entorhinal cortex (MEC) and other parahippocampal areas that send spatial and directional input to the MEC. MEC neurons fire in a precise, geometric pattern, forming a hexagonal grid that tessellates the surface of environments. Similar to place cells and head direc...

متن کامل

The Preferred Directions of Conjunctive Grid X Head Direction Cells in the Medial Entorhinal Cortex Are Periodically Organized.

The discovery of speed-modulated grid, head direction, and conjunctive grid x head direction cells in the medial entorhinal cortex has led to the hypothesis that path integration, the updating of one's spatial representation based on movement, may be carried out within this region. This hypothesis has been formalized by many computational models, including a class known as attractor network mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1621  شماره 

صفحات  -

تاریخ انتشار 2015